Endosperm cell division in maize kernels cultured at three levels of water potential.

نویسندگان

  • P N Myers
  • T L Setter
  • J T Madison
  • J F Thompson
چکیده

The influence of osmoticum treatments on early kernel development of maize (Zea mays L.) was studied using an in vitro culture method. Kernels with subtending cob sections were placed in culture at 5 days after pollination. Sucrose (0.29, 0.44, or 0.58 molar) and sorbitol (0, 0.15, or 0.29 molar) were used to obtain six media with water potentials of -1.1, -1.6, or -2.0 megapascals. Kernel water potential declined in correspondence with the water potential of the medium; however, fresh weight growth was not significantly inhibited from 5 to 12 days after pollination. In stress treatments with media water potentials of -1.6 or -2.0 megapascals, endosperm tissue accumulated water and solutes from 10 and 12 days after pollination at a rate similar to or greater than that of the control (-1.1 megapascals). In contrast, endosperm cell division was inhibited in all treatments relative to control. At 10 days after pollination, endosperm sucrose concentration was greater in two of the -2.0 megapascal treatments with 0.44 or 0.58 molar media sucrose compared to control kernels cultured in 0.29 molar sucrose at -1.1 megapascals. Significant increases in abscisic acid content per gram of fresh weight were detected in two -2.0 megapascal treatments (0.29 molar sucrose plus 0.29 molar sorbitol and 0.58 molar sucrose) at 10 days after pollination. We conclude that in cultured maize kernels, endosperm cell division was more responsive than fresh weight accumulation to low water potential treatments. Data were consistent with mechanisms involving abscisic acid or lowered tissue water potential, or an interaction of the two factors.

برای دانلود متن کامل این مقاله و بیش از 32 میلیون مقاله دیگر ابتدا ثبت نام کنید

ثبت نام

اگر عضو سایت هستید لطفا وارد حساب کاربری خود شوید

منابع مشابه

Comparative transcriptional profiling of placenta and endosperm in developing maize kernels in response to water deficit.

The early post-pollination phase of maize (Zea mays) development is particularly sensitive to water deficit stress. Using cDNA microarray, we studied transcriptional profiles of endosperm and placenta/pedicel tissues in developing maize kernels under water stress. At 9 d after pollination (DAP), placenta/pedicel and endosperm differed considerably in their transcriptional responses. In placenta...

متن کامل

Role of Cytokinin/Abscisic Acid Balance

Temperature stress during kernel development affects maize (Zea mays 1.) grain growth and yield stability. Maize kernels (hybrid A619 x W64A) were cultured in vitro at 3 d after pollination and either maintained at 25°C or transferred to 35'C for 4 or 8 d, then returned to 25'C until physiological maturity. Kernel fresh and dry matter accumulation was severely disrupted by the long-term heat st...

متن کامل

Kernel Abortion in Maize : II. Distribution of C among Kernel Carbohydrates.

This study was designed to compare the uptake and distribution of (14)C among fructose, glucose, sucrose, and starch in the cob, pedicel, and endosperm tissues of maize (Zea mays L.) kernels induced to abort by high temperature with those that develop normally. Kernels cultured in vitro at 30 and 35 degrees C were transferred to [(14)C]sucrose media 10 days after pollination. Kernels cultured a...

متن کامل

Sugar levels regulate tryptophan-dependent auxin biosynthesis in developing maize kernels.

The maize (Zea mays) Miniature1 (Mn1) locus encodes the cell wall invertase INCW2, which is localized predominantly in the basal endosperm transfer layer of developing kernels and catalyzes the conversion of sucrose into glucose and fructose. Mutations in Mn1 result in pleiotropic changes, including a reduction in kernel mass and a recently reported decrease in indole-3-acetic acid (IAA) levels...

متن کامل

PPR2263, a DYW-Subgroup Pentatricopeptide repeat protein, is required for mitochondrial nad5 and cob transcript editing, mitochondrion biogenesis, and maize growth.

RNA editing plays an important role in organelle gene expression in various organisms, including flowering plants, changing the nucleotide information at precise sites. Here, we present evidence that the maize (Zea mays) nuclear gene Pentatricopeptide repeat 2263 (PPR2263) encoding a DYW domain-containing PPR protein is required for RNA editing in the mitochondrial NADH dehydrogenase5 (nad5) an...

متن کامل

ذخیره در منابع من


  با ذخیره ی این منبع در منابع من، دسترسی به آن را برای استفاده های بعدی آسان تر کنید

برای دانلود متن کامل این مقاله و بیش از 32 میلیون مقاله دیگر ابتدا ثبت نام کنید

ثبت نام

اگر عضو سایت هستید لطفا وارد حساب کاربری خود شوید

عنوان ژورنال:
  • Plant physiology

دوره 99 3  شماره 

صفحات  -

تاریخ انتشار 1992